AVL树的介绍
AVL树是高度平衡的而二叉树。它的特点是:AVL树中任何节点的两个子树的高度最大差别为1。
AVL树的Java实现
1. 节点
1.1 节点定义
public class AVLTree<T extends Comparable
// AVL树的节点(内部类)
class AVLTreeNode<T extends Comparable<T>> {
T key; // 关键字(键值)
int height; // 高度
AVLTreeNode<T> left; // 左孩子
AVLTreeNode<T> right; // 右孩子
public AVLTreeNode(T key, AVLTreeNode<T> left, AVLTreeNode<T> right) {
this.key = key;
this.left = left;
this.right = right;
this.height = 0;
}
}
...... }
AVLTree是AVL树对应的类,而AVLTreeNode是AVL树节点,它是AVLTree的内部类。AVLTree包含了AVL树的根节点,AVL树的基本操作也定义在AVL树中。AVLTreeNode包括的几个组成对象: (01) key – 是关键字,是用来对AVL树的节点进行排序的。 (02) left – 是左孩子。 (03) right – 是右孩子。 (04) height – 是高度。
1.2 树的高度
/*
-
获取树的高度 */ private int height(AVLTreeNode
tree) { if (tree != null) return tree.height; return 0; }
public int height() { return height(mRoot); }
关于高度,有的地方将”空二叉树的高度是-1”,而本文采用维基百科上的定义:树的高度为最大层次。即空的二叉树的高度是0,非空树的高度等于它的最大层次(根的层次为1,根的子节点为第2层,依次类推)。
1.3 比较大小
/*
- 比较两个值的大小 */ private int max(int a, int b) { return a>b ? a : b; }
2.旋转
如果在AVL树中进行插入或删除节点后,可能导致AVL树失去平衡。这种失去平衡的可以概括为4种姿态:LL(左左),LR(左右),RR(右右)和RL(右左)。下面给出它们的示意图:
上图中的4棵树都是”失去平衡的AVL树”,从左往右的情况依次是:LL、LR、RL、RR。除了上面的情况之外,还有其它的失去平衡的AVL树,如下图:
上面的两张图都是为了便于理解,而列举的关于”失去平衡的AVL树”的例子。总的来说,AVL树失去平衡时的情况一定是LL、LR、RL、RR这4种之一,它们都由各自的定义:
(1) LL:LeftLeft,也称为”左左”。插入或删除一个节点后,根节点的左子树的左子树还有非空子节点,导致”根的左子树的高度”比”根的右子树的高度”大2,导致AVL树失去了平衡。 例如,在上面LL情况中,由于”根节点(8)的左子树(4)的左子树(2)还有非空子节点”,而”根节点(8)的右子树(12)没有子节点”;导致”根节点(8)的左子树(4)高度”比”根节点(8)的右子树(12)”高2。
(2) LR:LeftRight,也称为”左右”。插入或删除一个节点后,根节点的左子树的右子树还有非空子节点,导致”根的左子树的高度”比”根的右子树的高度”大2,导致AVL树失去了平衡。 例如,在上面LR情况中,由于”根节点(8)的左子树(4)的左子树(6)还有非空子节点”,而”根节点(8)的右子树(12)没有子节点”;导致”根节点(8)的左子树(4)高度”比”根节点(8)的右子树(12)”高2。
(3) RL:RightLeft,称为”右左”。插入或删除一个节点后,根节点的右子树的左子树还有非空子节点,导致”根的右子树的高度”比”根的左子树的高度”大2,导致AVL树失去了平衡。 例如,在上面RL情况中,由于”根节点(8)的右子树(12)的左子树(10)还有非空子节点”,而”根节点(8)的左子树(4)没有子节点”;导致”根节点(8)的右子树(12)高度”比”根节点(8)的左子树(4)”高2。
(4) RR:RightRight,称为”右右”。插入或删除一个节点后,根节点的右子树的右子树还有非空子节点,导致”根的右子树的高度”比”根的左子树的高度”大2,导致AVL树失去了平衡。 例如,在上面RR情况中,由于”根节点(8)的右子树(12)的右子树(14)还有非空子节点”,而”根节点(8)的左子树(4)没有子节点”;导致”根节点(8)的右子树(12)高度”比”根节点(8)的左子树(4)”高2。
如果在AVL树中进行插入或删除节点后,可能导致AVL树失去平衡。AVL失去平衡之后,可以通过旋转使其恢复平衡,下面分别介绍”LL(左左),LR(左右),RR(右右)和RL(右左)”这4种情况对应的旋转方法。
2.1 LL的旋转
LL失去平衡的情况,可以通过一次旋转让AVL树恢复平衡。如下图:
图中左边是旋转之前的树,右边是旋转之后的树。从中可以发现,旋转之后的树又变成了AVL树,而且该旋转只需要一次即可完成。 对于LL旋转,你可以这样理解为:LL旋转是围绕”失去平衡的AVL根节点”进行的,也就是节点k2;而且由于是LL情况,即左左情况,就用手抓着”左孩子,即k1”使劲摇。将k1变成根节点,k2变成k1的右子树,”k1的右子树”变成”k2的左子树”。
LL的旋转代码
复制代码 复制代码 /*
- LL:左左对应的情况(左单旋转)。 *
-
返回值:旋转后的根节点 */ private AVLTreeNode
leftLeftRotation(AVLTreeNode k2) { AVLTreeNode k1; k1 = k2.left; k2.left = k1.right; k1.right = k2;
k2.height = max( height(k2.left), height(k2.right)) + 1; k1.height = max( height(k1.left), k2.height) + 1;
return k1; }
2.2 RR的旋转
理解了LL之后,RR就相当容易理解了。RR是与LL对称的情况!RR恢复平衡的旋转方法如下:
图中左边是旋转之前的树,右边是旋转之后的树。RR旋转也只需要一次即可完成。
RR的旋转代码
/*
- RR:右右对应的情况(右单旋转)。 *
-
返回值:旋转后的根节点 */ private AVLTreeNode
rightRightRotation(AVLTreeNode k1) { AVLTreeNode k2; k2 = k1.right; k1.right = k2.left; k2.left = k1;
k1.height = max( height(k1.left), height(k1.right)) + 1; k2.height = max( height(k2.right), k1.height) + 1;
return k2; }
2.3 LR的旋转
LR失去平衡的情况,需要经过两次旋转才能让AVL树恢复平衡。如下图:
第一次旋转是围绕”k1”进行的”RR旋转”,第二次是围绕”k3”进行的”LL旋转”。
LR的旋转代码
/*
- LR:左右对应的情况(左双旋转)。 *
-
返回值:旋转后的根节点 */ private AVLTreeNode
leftRightRotation(AVLTreeNode k3) { k3.left = rightRightRotation(k3.left); return leftLeftRotation(k3); }
2.4 RL的旋转
RL是与LR的对称情况!RL恢复平衡的旋转方法如下:
第一次旋转是围绕”k3”进行的”LL旋转”,第二次是围绕”k1”进行的”RR旋转”。
RL的旋转代码
复制代码 复制代码 /*
- RL:右左对应的情况(右双旋转)。 *
-
返回值:旋转后的根节点 */ private AVLTreeNode
rightLeftRotation(AVLTreeNode k1) { k1.right = leftLeftRotation(k1.right); return rightRightRotation(k1); }
- 插入
插入节点的代码
/*
- 将结点插入到AVL树中,并返回根节点 *
- 参数说明:
- tree AVL树的根结点
- key 插入的结点的键值
- 返回值:
-
根节点 */ private AVLTreeNode
insert(AVLTreeNode tree, T key) { if (tree == null) { // 新建节点 tree = new AVLTreeNode (key, null, null); if (tree==null) { System.out.println("ERROR: create avltree node failed!"); return null; } } else { int cmp = key.compareTo(tree.key); if (cmp < 0) { // 应该将key插入到"tree的左子树"的情况 tree.left = insert(tree.left, key); // 插入节点后,若AVL树失去平衡,则进行相应的调节。 if (height(tree.left) - height(tree.right) == 2) { if (key.compareTo(tree.left.key) < 0) tree = leftLeftRotation(tree); else tree = leftRightRotation(tree); } } else if (cmp > 0) { // 应该将key插入到"tree的右子树"的情况 tree.right = insert(tree.right, key); // 插入节点后,若AVL树失去平衡,则进行相应的调节。 if (height(tree.right) - height(tree.left) == 2) { if (key.compareTo(tree.right.key) > 0) tree = rightRightRotation(tree); else tree = rightLeftRotation(tree); } } else { // cmp==0 System.out.println("添加失败:不允许添加相同的节点!"); } }
tree.height = max( height(tree.left), height(tree.right)) + 1;
return tree; }
public void insert(T key) { mRoot = insert(mRoot, key); } 复制代码 复制代码
- 删除
删除节点的代码
复制代码 复制代码 /*
- 删除结点(z),返回根节点 *
- 参数说明:
- tree AVL树的根结点
- z 待删除的结点
- 返回值:
- 根节点
*/
private AVLTreeNode
remove(AVLTreeNode tree, AVLTreeNode z) { // 根为空 或者 没有要删除的节点,直接返回null。 if (tree==null || z==null) return null;
int cmp = z.key.compareTo(tree.key);
if (cmp < 0) { // 待删除的节点在"tree的左子树"中
tree.left = remove(tree.left, z);
// 删除节点后,若AVL树失去平衡,则进行相应的调节。
if (height(tree.right) - height(tree.left) == 2) {
AVLTreeNode<T> r = tree.right;
if (height(r.left) > height(r.right))
tree = rightLeftRotation(tree);
else
tree = rightRightRotation(tree);
}
} else if (cmp > 0) { // 待删除的节点在"tree的右子树"中
tree.right = remove(tree.right, z);
// 删除节点后,若AVL树失去平衡,则进行相应的调节。
if (height(tree.left) - height(tree.right) == 2) {
AVLTreeNode<T> l = tree.left;
if (height(l.right) > height(l.left))
tree = leftRightRotation(tree);
else
tree = leftLeftRotation(tree);
}
} else { // tree是对应要删除的节点。
// tree的左右孩子都非空
if ((tree.left!=null) && (tree.right!=null)) {
if (height(tree.left) > height(tree.right)) {
// 如果tree的左子树比右子树高;
// 则(01)找出tree的左子树中的最大节点
// (02)将该最大节点的值赋值给tree。
// (03)删除该最大节点。
// 这类似于用"tree的左子树中最大节点"做"tree"的替身;
// 采用这种方式的好处是:删除"tree的左子树中最大节点"之后,AVL树仍然是平衡的。
AVLTreeNode<T> max = maximum(tree.left);
tree.key = max.key;
tree.left = remove(tree.left, max);
} else {
// 如果tree的左子树不比右子树高(即它们相等,或右子树比左子树高1)
// 则(01)找出tree的右子树中的最小节点
// (02)将该最小节点的值赋值给tree。
// (03)删除该最小节点。
// 这类似于用"tree的右子树中最小节点"做"tree"的替身;
// 采用这种方式的好处是:删除"tree的右子树中最小节点"之后,AVL树仍然是平衡的。
AVLTreeNode<T> min = maximum(tree.right);
tree.key = min.key;
tree.right = remove(tree.right, min);
}
} else {
AVLTreeNode<T> tmp = tree;
tree = (tree.left!=null) ? tree.left : tree.right;
tmp = null;
}
}
return tree; }
public void remove(T key) {
AVLTreeNode
if ((z = search(mRoot, key)) != null)
mRoot = remove(mRoot, z); } 复制代码 复制代码
完整的实现代码 AVL树的实现文件(AVRTree.java)
AVL树的测试程序(AVLTreeTest.java)
View Code
AVL树的Java测试程序
AVL树的测试程序运行结果如下:
复制代码 复制代码 == 依次添加: 3 2 1 4 5 6 7 16 15 14 13 12 11 10 8 9 == 前序遍历: 7 4 2 1 3 6 5 13 11 9 8 10 12 15 14 16 == 中序遍历: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 == 后序遍历: 1 3 2 5 6 4 8 10 9 12 11 14 16 15 13 7 == 高度: 5 == 最小值: 1 == 最大值: 16 == 树的详细信息: 7 is root 4 is 7’s left child 2 is 4’s left child 1 is 2’s left child 3 is 2’s right child 6 is 4’s right child 5 is 6’s left child 13 is 7’s right child 11 is 13’s left child 9 is 11’s left child 8 is 9’s left child 10 is 9’s right child 12 is 11’s right child 15 is 13’s right child 14 is 15’s left child 16 is 15’s right child
== 删除根节点: 8 == 高度: 5 == 中序遍历: 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 == 树的详细信息: 7 is root 4 is 7’s left child 2 is 4’s left child 1 is 2’s left child 3 is 2’s right child 6 is 4’s right child 5 is 6’s left child 13 is 7’s right child 11 is 13’s left child 9 is 11’s left child 10 is 9’s right child 12 is 11’s right child 15 is 13’s right child 14 is 15’s left child 16 is 15’s right child 复制代码 复制代码
下面,我们对测试程序的流程进行分析!
-
新建AVL树
-
依次添加”3,2,1,4,5,6,7,16,15,14,13,12,11,10,8,9” 到AVL树中。
2.01 添加3,2 添加3,2都不会破坏AVL树的平衡性。
2.02 添加1 添加1之后,AVL树失去平衡(LL),此时需要对AVL树进行旋转(LL旋转)。旋转过程如下:
2.03 添加4 添加4不会破坏AVL树的平衡性。
2.04 添加5 添加5之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。旋转过程如下:
2.05 添加6 添加6之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。旋转过程如下:
2.06 添加7 添加7之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。旋转过程如下:
2.07 添加16 添加16不会破坏AVL树的平衡性。
2.08 添加15 添加15之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。旋转过程如下:
2.09 添加14 添加14之后,AVL树失去平衡(RL),此时需要对AVL树进行旋转(RL旋转)。旋转过程如下:
2.10 添加13 添加13之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。旋转过程如下:
2.11 添加12 添加12之后,AVL树失去平衡(LL),此时需要对AVL树进行旋转(LL旋转)。旋转过程如下:
2.12 添加11 添加11之后,AVL树失去平衡(LL),此时需要对AVL树进行旋转(LL旋转)。旋转过程如下:
2.13 添加10 添加10之后,AVL树失去平衡(LL),此时需要对AVL树进行旋转(LL旋转)。旋转过程如下:
2.14 添加8 添加8不会破坏AVL树的平衡性。
2.15 添加9 但是添加9之后,AVL树失去平衡(LR),此时需要对AVL树进行旋转(LR旋转)。旋转过程如下:
- 打印树的信息
输出下面树的信息:
前序遍历: 7 4 2 1 3 6 5 13 11 9 8 10 12 15 14 16 中序遍历: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 后序遍历: 1 3 2 5 6 4 8 10 9 12 11 14 16 15 13 7 高度: 5 最小值: 1 最大值: 16
- 删除节点8
删除操作并不会造成AVL树的不平衡。
删除节点8之后,再打印该AVL树的信息。 高度: 5 中序遍历: 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16